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There is, however, one natural feature of this country, 
the interest and grandeur of which may be fully ap-
preciated in a single walk: it is the “virgin forest”[…] 
Here no one who has any feeling of the magnificent 
and the sublime can be disappointed. These, and many 
other novel features […] taken altogether surpass de-
scription, and produce feelings in the beholder of 
admiration and awe.

Wallace, Letter to Members of the Mechanics Institute 
(1849)

…… contemplate an entangled bank, clothed with many 
plants of different kinds, with birds singing in the bushes, 
with various insects flitting about, and with worms 
crawling through the damp earth [...] reflect that these 

elaborately constructed forms, so different from each 
other, […] dependent on each other in so complex a man-
ner have all been produced by laws acting around us.

Darwin, Origin of Species (1859)

Tropical rain forests are truly complex places exhibiting a very high 
diversity of life in virtually all terrestrial taxa. From an ecological view-
point, this means that these form eye-wateringly complex networks 
of species–species interactions at spatial scales varying from the local 
to the continental. As our attention moves from rain forests to drier 
forests, scrublands and grasslands, this complexity diminishes but is 
still of a very high order.

As both Wallace and Darwin recognized, the principal multicelled 
players in this ecological drama are the invertebrates, particularly 
the arthropods and predominantly the insects. This dominance 
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reflects not just diversity but also functional importance leading 
Edward O. Wilson to suggest they were “The Little Things that Run 
the World” (Wilson, 1987).

In this special issue of Biotropica, we showcase some of the 
latest research on invertebrates in tropical ecosystems and spec-
ulate on the future of invertebrate studies in tropical forests. 
Historically, of course, some taxa and their ecological roles have 
received attention from researchers throughout the period in 
which “Tropical Ecology” has been an acknowledged sub-disci-
pline. A browse through the early issues of Biotropica supports this 
assertion. The first rather slim issue of the journal in 1969, never-
theless, contained work on tropical cockroaches (Willis, 1969), and 
the first of many papers on tropical butterflies appeared in volume 
2 (Cook, Frank, & Brower, 1970).

The papers included in the present issue present less familiar 
model taxa (such as the Auchenorrhyncha), exploring innovative 
methods and responses to elevation gradients. Other contributions 
examine complexity and mapping approaches to understanding re-
sponses of invertebrates to human-modified landscapes, and some 
examine the functional roles of invertebrates in tropical ecosystems. 
In this introduction, we focus principally on the diversity and func-
tional roles of the arthropods.

1  | THE CONTE X T

1.1 | Global diversity

Even by 1988 (May, 1988), there were well over a million described 
species of arthropods, followed (in the terrestrial biota) by the 
nematodes (103–104 species), the molluscs (103–104), and the an-
nelids (103–104). Of the 105 plus described species of terrestrial 
arthropods, an overwhelming majority were insects. Stimulated by 
Erwin's (1982) initial estimates of global arthropod diversity, a vig-
orous debate on the “how many species?” question has challenged 
entomologists for over 40 years. Recent estimates have tended to 
converge on the more modest (but still impressively large) average 
of about 7 million species of terrestrial arthropods of which 6.1 
million are insects and 1.5 million beetles (Stork, 2018). It is note-
worthy that these may include about a million species of mites. 
Overall, it is estimated that perhaps 80% of these species remain 
to be described. Stork (2018) repeatedly stresses the preponder-
ance of the tropical fauna in these assessments across all biogeo-
graphical realms.

1.2 | Local diversity

Substantial fractions of the arthropod biodiversity of tropical rain 
forests have been assessed in very few locations globally (Basset et 

al., 2012). Comprehensive surveys necessarily target a wide range 
of taxa and use multiple survey methodologies. While we recog-
nize that knowledge about the identities, roles, and uses of many 
invertebrates were, and remain, known to the original human popu-
lations of tropical regions, the Centenary Expedition of the Royal 
Entomological Society of London to northern Sulawesi in 1985 was 
one of the first modern quantitative attempts at such an assessment 
(Knight & Holloway, 1990). Resulting from that work, Hammond 
(1990) summarized the results from a core area of about 500 ha of 
lowland forest based on a sampling of several million insect speci-
mens. He focussed down on the Coleoptera estimating somewhat 
more than 6,000 species from among the 1.17 million specimens 
sampled. The Sulawesi study was ground-breaking, but Hammond's 
report did not use extrapolation methods to estimate total diversity. 
The “IBISCA Panama” study (Basset et al., 2007, 2012), subsequently, 
did use such methods. Working on multitaxon, multiple methods 
surveys of the 6,000 ha lowland San Lorenzo Forest, Basset et al. 
(2012) estimated the presence of about 25,000 species of arthropod 
of which about 60% might be found in a single hectare. Other local 
studies in the tropics have focussed either on particular host plants, 
particular taxa or particular trophic groups (e.g. Basset & Novotny, 
1999; Dahlsjö et al., 2014; Novotny et al., 2004; Prinzing & Woas, 
2003).

Exciting and instructive (not to say challenging) as these local 
estimates (alpha diversity) have been, it is place to place taxonomic 
turnover—beta diversity—that generates the immense regional val-
ues for species richness characteristic of the tropics. Few places 
have been adequately sampled for alpha diversity, and there remains 
even more uncertainty about beta diversity (Bell, Heard, Manion, 
Ferrier, & Klinken, 2013).

There is evidence that suggests that the magnitude of spatial 
turnover may be taxon-specific, reflecting the dispersive abil-
ities of the organisms concerned. When termites are assessed 
using standard transects, for example, Davies's , Eggleton, Jones, 
Gathorne-Hardy, and Hernández (2003) cross-continental com-
parisons show low beta diversity within biogeographical areas, 
but almost complete turnover across biogeographical boundaries 
(Eggleton et al., 1997, 1996). Novotny showed that beta diversity 
is relatively low in New Guinea herbivores (Novotny et al., 2007). 
Other, more dispersive groups such as moths show higher rates of 
turnover especially when this is assessed to include relative abun-
dance (Beck & Khen, 2007; Kitching, Ashton, Nakamura, Whitaker, 
& Khey, 2013).

An underlying problem, especially when turnover is assessed 
using species presence or absence, is undersampling, which is com-
mon in tropical studies (Coddington, Agnarsson, Miller, Kuntner, 
& Hormiga, 2009) producing the appearance of turnover that in-
flate estimates of beta diversity. Carefully designed comparative 
studies which incorporate relative abundance can show patterns 
of turnover even when the entire fauna cannot be realistically sam-
pled. When it comes to identifying general patterns, however, the 
jury is still out.

 17447429, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/btp.12768 by O

berlin C
ollege L

ibrary, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



     |  209COMMENTARY

2  | ECOLOGIC AL ROLES

From an ecological point of view, of course, it is the functional role 
of organisms within ecosystems which is the particular focus. It has 
been customary to classify invertebrates within ecosystems in terms of 
their trophic roles—the herbivores, decomposers, predators, parasites, 
and so on. In an ecosystem context, it is also useful to consider their 
roles in networks. In broad terms, we can classify these networks on 
the grounds of their basal resources. Those based directly on the living 
photosynthetic products of plants (or their subsequent biochemically 
transformed derivatives) are so-called “green” food webs; those based 
on dead and dying plant material are “brown” food webs (Kaspari & 
Yanoviak, 2009; Swift, Heal, & Anderson, 1979). These detritus-based 
“brown” webs are, of course, multitrophic including microbial decom-
posers, animal cadavers, and wastes, as well as non-living products 
based entirely on plant material. Table 1 summarizes the principal 
trophic roles within each of these types of food webs and some exam-
ples of arthropod groups that fit within these categories.

2.1 | The green food web

Constructing a “green” food web generally begins by assessing the 
species diversity of plants in any location. In tropical systems, this 
seldom goes beyond an estimation of the number of woody plants in 
surveyed plots although some of the best work on tropical plant–herbi-
vore connections has focused on herbaceous plants (e.g. Morris, Lewis, 
& Godfray, 2004) or woody seedlings and saplings (e.g. Maunsell, 
Kitching, Burwell, & Morris, 2015). Leaf miners have been a focus of at-
tention principally because host–plant identity is firmly established by 
the existence of the leaf mine. Establishing and quantifying host–plant 
associations in the case of free-living herbivores is considerably more 
challenging and is best done by large teams of collectors followed by 
large-scale rearing programmes (e.g. Basset & Novotny, 1999). Rearing 
programmes have the additional advantage of quantifying the level of 
parasitoidism within the food web.

Within tropical systems, other forms of living-plant herbivory—
such as feeding on pollen, flowers, seeds, fruits, bark or wood, or on 
basal plants and lichens in general, are relatively little studied at the 
community level. This represents a major knowledge gap.

Among the arthropods, several higher-level taxa are almost ex-
clusively herbivorous. The orders, Lepidoptera and Phasmida to-
gether with very large sections of the Orthoptera and Hemiptera, 
are cases in point. Among the vast order Coleoptera, the large fam-
ilies Chrysomelidae and Curculionidae are dominant herbivores. 
Other players may make up in mass action what they lack in spe-
cies diversity—canopy scale insects, herbivorous grasshoppers, and 
leaf-cutting ants are striking examples.

Defining trophic levels above that of primary consumers (herbi-
vores in the case of green webs) presents a challenge. Hymenopteran, 
dipteran, and other parasitoids are generally supposed to be re-
stricted in their host ranges and, accordingly, can often be assigned 
confidently to particular food webs. For other predators, web 

specificity is less common. Free-living predators such as spiders, 
odonates, predatory flies, and the like no doubt participate across 
many webs regardless of the resource base involved. Indeed, in this 
respect, they are likely to play important roles in forming the “me-
ta-web” which exists within the entire ecosystem regardless of the 
basal resource involved (Devoto, Bailey, & Memmott, 2014; Pocock, 
Evans, & Memmott, 2012).

Vertebrate dung, cadavers, and other produce may also be re-
garded as an adjunct to the traditional idea of green food webs, 
although whether or not the generators of these resources are or 
are not primary herbivores or their predators makes this placement 
open to interpretation. In any case, these resources maintain special-
ist sets of invertebrate necrophages, coprophages, keratinophages, 
nest commensals, and so forth.

2.2 | The brown food web

Plant detritus in its many forms constitutes the resource base of 
“brown” food webs often through the intermediary actions of fungi 
or saprophagous micro-organisms. Taxa generally assumed to form 
the base of saprophagous food webs include the Termitoidea, 
Isopoda, Diplopoda, and Collembola. Few arthropods, however, ap-
pear to feed directly on dead plant material without the assistance 
of microbes either externally or internally. Fungi are crucial in this 
regard: In fact, just as herbivores release the photosynthetic energy 
synthesized by plants to the wider green food web, so fungi process 
dead and dying plant material making it available to the wider partici-
pants in the brown food web.

In terrestrial systems, brown food webs have received much 
less attention by ecologists than their green counterparts perhaps 
because of this “fungal wall” to understanding. Just as green plants 
offer roles for many different feeding guilds, so fungi are also far 
from an homogenous resource. Lawrence and Milner (1996) offer 
one of the few reviews of the manifest roles of fungi as resources for 
arthropods. The categories presented in Table 1 are condensed from 
their detailed treatment.

2.3 | The importance of vertebrates?

There are probably, globally, about 53,000 species of terrestrial 
vertebrates. This liberal estimate allows all Amphibia to be hon-
orary “terrestrials.” This maximum accepts the substantial in-
creases for birds (Barrowclough, Cracraft, Klicka, & Zink, 2016) 
and mammals (Burgin, Colella, Kahn, & Upham, 2018) recently 
proposed based, in part at least, on untested assumptions about 
cryptic species expected to arise from further molecular analyses. 
Undoubtedly, more species will be described but it is reasonable 
to assume that this figure represents a substantial proportion of all 
extant terrestrial vertebrates. These vertebrates comprise a com-
plete sub-phylum of the Chordata with all the classes, orders, and 
families contained within this clade. In contrast, recent estimates 
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suggest that the single family of true weevils (the Curculionidae), 
within the Order Coleoptera, itself contains 53,000 described 
species (Lawrence & Slipinski, 2013). Zimmerman (1994) quotes 
Marshall's estimate that there may be anywhere between 200,000 
and 250,000 species of weevils globally, most still awaiting 
description.

Nevertheless, although comparisons of species richness of 
vertebrates with terrestrial arthropods may be “no-contests,” 
it can be argued that in places with an intact megafauna—like 
some African savannahs—the vertebrates make up for their mod-
est species richness by their large biomass. Here, again data are 
sparse, and it may well be that the termites alone are comparable 
to the vertebrates in sheer mass (Bell, 1982; Ferrar, 1982; Tuma, 
Eggleton, & Fayle, 2019).

Vertebrates participate directly, mostly in green food webs as 
herbivores, predators, and top predators. Their invertebrate ecto 
and endoparasitic loads add a further trophic level to these green 
webs as do blood feeders such as mosquitoes. Endoparasites such as 
nematodes and platyhelminths are ubiquitous and usually host-spe-
cific. Arthropods dominate the ectoparasitic load through a range of 
taxa from gasterophilid flies to ticks, fleas to arixeniine Dermaptera. 
The non-living products of vertebrates—their cadavers, dung, skin 
debris, nesting material, and so forth—are further resources within 
the forest ecosystem. A well-known set of arthropods play major 
roles as necrophiles feeding on the cadavers of vertebrates. The 
beetle families Silphidae and Necrophoridae together with a range 
of higher fly taxa are among the best-known of these. Dung feed-
ers include scarab and staphylinine beetles, muscid, and calliphorid 
flies. A further set of taxa feed on sloughed keratin within the living 
or dead pelts of vertebrates. Finally, there is a range of commensal 
feeders from specialists that infest the nests of vertebrates through 
to those that benefit from the grazing or browsing activities of their 
“hosts.” The presence of an intact vertebrate fauna, accordingly, is 
vitally important in maintaining arthropod and other invertebrate 
diversity. Their presence, in addition, is important in maintaining 
soil nutrients and seed dispersal with flow-on effects for forest 
structure—and the complex of resources these present to the in-
vertebrates (Doughty et al., 2013). There is some evidence that 
invertebrates decline with defaunation of megafauna due to the im-
pact on understory vegetation and resource availability (Lamperty, 
Zhu, Poulsen, & Dunham, 2019) but more broadly based work is 
needed. The “empty forest syndrome” (Redford, 1992) may not be 
just a conservation disaster for hunted vertebrates, and it may well 
have knock-on effects upon the entire forest fauna.

3  | CONCLUSIONS AND THE NE X T 
50 YE ARS

Through these complexes, ubiquitous and inter-connected food 
webs the invertebrates, particularly the arthropods, clearly play 
key roles in energy transformation and nutrient flows within eco-
systems. There remain far more data gaps, some of which we have 
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mentioned above, especially in tropical systems, than well-sam-
pled locations. Nevertheless, there is considerable justification for 
E. O. Wilson's (1987) prognosis that these are “the little things that 
run the world.”

The contributions in this issue add weight to this contention and 
indicate exciting new directions for future work. We touch on sev-
eral such directions here.

1. Well-designed comparative approaches comparing ecological 
patterns across ecological gradients and boundaries produce 
new and more general insights (see Chatelain, Elias, Guilbert, & 
Soulier-Perkins, 2019; Mottl, Fayle, Yombai, Novotný, & Klimeš, 
2019; Rabl, Gottsberger, Brehm, Hofhansl, & Fiedler, 2019; 
Raine, Slade, & Lewis, 2019, all available in this issue).

2. Expanding attention into a wider spread of invertebrate taxa 
adds insights as a wider range of ecosystem functions is encom-
passed (see Chatelain et al., 2019, Drinkwater, Williamson, Clare, 
& Rossiter, 2019, Luke, 2019 and Phillips, Chung, Edgecombe, & 
Ellwood, 2019, all available in this issue).

3. Using the rapid response times of invertebrates in terrestrial eco-
systems allows us to evaluate impacts of and recovery from envi-
ronmental transformations due to natural and human actions (see 
Franca et al. 2019, Luke et al., 2019, Stone, Shoo, Stork, Sheldon, 
& Catterall, 2019, Torppa, Wirta, & Hanski, 2019, all available in 
this issue).

4. The availability of effectively limitless computing power po-
tentially allows the enormous complexity of tropical food webs 
and distribution maps (see Scriven et al., 2019, this issue) to be 
modeled realistically: Interpreting very complex model systems 
of course may be as challenging as contemplating the real thing 
(McLane, Semeniuk, Mcdermid, & Marceau, 2011).

5. Aligning pattern and process: Does tropical biodiversity matter 
beyond its intrinsic value? Can ecosystem processes and service 
survive a massive decline in invertebrate species and density? (see 
Dahlsjö et al., 2019, this issue)?

These and other developments paint an exciting picture for in-
vertebrate biologists working in the tropics over the next 50 years. 
Novel methods and approaches, of course, do not invalidate the 
more traditional approaches and the gradual accrual of natural his-
torical information on tropical systems. Biotropica and other outlets 
will continue to be a conduit for this fundamental information as well 
as championing novelty and innovation—as it has done for the last 
50 years.
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